Dear Suza,<br><br><div class="gmail_quote">On Sun, Feb 12, 2012 at 5:05 PM, Suza W <span dir="ltr"><<a href="mailto:suza.rri@gmail.com">suza.rri@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0pt 0pt 0pt 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<br><div class="gmail_quote"><div class="im"><div><blockquote class="gmail_quote" style="margin:0pt 0pt 0pt 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
> if you have degenerate eigenvalues, any linear combination of eigenvectors<br>
> in the degenerate subspace is a solution. What you get from numerical<br>
> diagonalization depends upon the phase of the moon.<br>
<br></blockquote></div></div><div> Yes Prof. Giannozzi, in principle, it is true. <br> Nevertheless, in practice, phonon code in ABINIT <br> always renders these well-arranged eigen displacements <br> without depending much on the phase of the moon.<div class="im">
<div>
<br>
<br> ( 0.0 0.0 2.30182985E-05 )<br> ( 0.0 0.0 1.65666412E-03 )<br> ( 0.0 0.0 -1.75258026E-04 )<br> ( 0.0 0.0 -3.12875743E-03 )<br>
( 0.0 0.0 -1.75258026E-04 ) <br><br> ( 0.0 2.30182985E-05 0.0 )<br>
( 0.0 1.65666412E-03 0.0 )<br>
( 0.0 -1.75258026E-04 0.0 )<br>
( 0.0 -3.12875743E-03 0.0 )<br>
( 0.0 -1.75258026E-04 0.0 ) <br><br> ( 2.30182985E-05 0.0 0.0 )<br>
( 1.65666412E-03 0.0 0.0 )<br>
( -1.75258026E-04 0.0 0.0 )<br>
( -3.12875743E-03 0.0 0.0 )<br>
( -1.75258026E-04 0.0 0.0 ) </div></div></div><div><br></div></div></blockquote><br></div>I think, after applying ASR i.e. using dynmat.x, you can <br>obtain these well arranged eigen vectors. Although no so sure.<br>
<br>regards,<br>Sonu<br><br><br><br>