<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML xmlns:o = "urn:schemas-microsoft-com:office:office" xmlns:st1 = 
"urn:schemas-microsoft-com:office:smarttags"><HEAD>
<META http-equiv=Content-Type content="text/html; charset=GB2312">
<META content="MSHTML 6.00.2900.3354" name=GENERATOR>
<STYLE>@font-face {
        font-family: ËÎÌå;
}
@font-face {
        font-family: Verdana;
}
@font-face {
        font-family: @ËÎÌå;
}
@page Section1 {size: 595.3pt 841.9pt; margin: 72.0pt 90.0pt 72.0pt 90.0pt; layout-grid: 15.6pt; }
P.MsoNormal {
        TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify
}
LI.MsoNormal {
        TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify
}
DIV.MsoNormal {
        TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify
}
A:link {
        COLOR: blue; TEXT-DECORATION: underline
}
SPAN.MsoHyperlink {
        COLOR: blue; TEXT-DECORATION: underline
}
A:visited {
        COLOR: purple; TEXT-DECORATION: underline
}
SPAN.MsoHyperlinkFollowed {
        COLOR: purple; TEXT-DECORATION: underline
}
SPAN.EmailStyle17 {
        FONT-WEIGHT: normal; COLOR: windowtext; FONT-STYLE: normal; FONT-FAMILY: Verdana; TEXT-DECORATION: none; mso-style-type: personal-compose
}
DIV.Section1 {
        page: Section1
}
UNKNOWN {
        FONT-SIZE: 10pt
}
BLOCKQUOTE {
        MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px; MARGIN-LEFT: 2em
}
OL {
        MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
UL {
        MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
</STYLE>
</HEAD>
<BODY 
style="BORDER-TOP-WIDTH: 0px; BORDER-LEFT-WIDTH: 0px; FONT-SIZE: 10pt; BORDER-BOTTOM-WIDTH: 0px; FONT-FAMILY: verdana; BORDER-RIGHT-WIDTH: 0px">
<DIV><FONT face=Verdana size=2><FONT color=#000080>Dear&nbsp;Stefano, Eyvaz and 
Lazaro,</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080></FONT></FONT>&nbsp;</DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>&nbsp;&nbsp;&nbsp; I 
deeply&nbsp;appreciate your kindly help. I must&nbsp;be cautious in 
understanding&nbsp;</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>the fundamental 
concepts&nbsp;of quantum mechanics indeed.&nbsp;I need spend</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>more time to master them as 
Stefano suggested. Although they are rather abstract</FONT></FONT></DIV>
<DIV><FONT color=#000080>for&nbsp;me, I hope I can apprehend their physical 
essence. </FONT><FONT face=Verdana size=2></DIV>
<DIV>
<DIV>&nbsp;</DIV>
<DIV>wrote by Stefano B:</DIV>
<DIV>&gt;1)&nbsp;The&nbsp;eigenstates&nbsp;of&nbsp;the&nbsp;Hamiltonian&nbsp;of&nbsp;a&nbsp;system&nbsp;of&nbsp;non-interacting&nbsp;&nbsp;</DIV>
<DIV>&gt;electrons&nbsp;can&nbsp;ALWAYS&nbsp;be&nbsp;chosen&nbsp;as&nbsp;antisymmetrized&nbsp;products&nbsp;("Slater&nbsp;&nbsp;</DIV>
<DIV>&gt;deteminants")&nbsp;of&nbsp;one-particle&nbsp;wavefunctions&nbsp;("molecular&nbsp;orbitals"&nbsp;in&nbsp;&nbsp;</DIV>
<DIV>&gt;quantum&nbsp;chemistry,&nbsp;"Bloch&nbsp;states"&nbsp;in&nbsp;solid-state&nbsp;physics)&nbsp;which&nbsp;are&nbsp;&nbsp;</DIV>
<DIV>&gt;eigenfunctions&nbsp;of&nbsp;a&nbsp;one-electron&nbsp;Hamiltonian.&nbsp;Pay&nbsp;attention&nbsp;to&nbsp;the&nbsp;&nbsp;</DIV>
<DIV>&gt;conceptually&nbsp;simple,&nbsp;trivial,&nbsp;but&nbsp;often&nbsp;overlooked,&nbsp;difference&nbsp;between&nbsp;&nbsp;</DIV>
<DIV>&gt;the&nbsp;many-body&nbsp;Hamiltonian&nbsp;(with&nbsp;its-own&nbsp;eigenfunctions&nbsp;and&nbsp;&nbsp;</DIV>
<DIV>&gt;eigenstates)&nbsp;and&nbsp;the&nbsp;one-particle&nbsp;Hamiltonian.&nbsp;The&nbsp;many-body&nbsp;energy&nbsp;is&nbsp;&nbsp;</DIV>
<DIV>&gt;simply&nbsp;the&nbsp;sum&nbsp;of&nbsp;the&nbsp;one-electron&nbsp;energies&nbsp;of&nbsp;all&nbsp;the&nbsp;molecular&nbsp;&nbsp;</DIV>
<DIV>&gt;orbitals&nbsp;whose&nbsp;product&nbsp;is&nbsp;the&nbsp;many-body&nbsp;eigenstate.</DIV>
<DIV>
<DIV><FONT color=#000080>&gt;&nbsp;</FONT></DIV></DIV>
<DIV>&gt;2)&nbsp;The&nbsp;antisymmetric&nbsp;nature&nbsp;of&nbsp;the&nbsp;many-body&nbsp;wavefunctions&nbsp;is&nbsp;such&nbsp;&nbsp;</DIV>
<DIV>&gt;that,&nbsp;if&nbsp;you&nbsp;construct&nbsp;&nbsp;a&nbsp;product&nbsp;of&nbsp;a&nbsp;set&nbsp;of&nbsp;functions&nbsp;where&nbsp;two&nbsp;of&nbsp;&nbsp;</DIV>
<DIV>&gt;them&nbsp;are&nbsp;equal,&nbsp;the&nbsp;result&nbsp;will&nbsp;vanish.&nbsp;This&nbsp;is&nbsp;the&nbsp;PAULI&nbsp;PRINCIPLE.&nbsp;&nbsp;</DIV>
<DIV>&gt;No&nbsp;two&nbsp;electrons&nbsp;can&nbsp;occupy&nbsp;the&nbsp;same&nbsp;one-electron&nbsp;state.</DIV>
<DIV>&gt;</DIV>
<DIV>&gt;3)&nbsp;Because&nbsp;of&nbsp;(2),&nbsp;the&nbsp;lowest&nbsp;possible&nbsp;many-body&nbsp;energy&nbsp;(ground&nbsp;state)&nbsp;&nbsp;</DIV>
<DIV>&gt;is&nbsp;the&nbsp;sum&nbsp;of&nbsp;the&nbsp;lowest&nbsp;N&nbsp;one-particle&nbsp;energy&nbsp;eigenvalues&nbsp;(N&nbsp;being&nbsp;&nbsp;</DIV>
<DIV>&gt;the&nbsp;number&nbsp;of&nbsp;electrons).&nbsp;The&nbsp;highest&nbsp;occupied&nbsp;one-electron&nbsp;energy&nbsp;&nbsp;</DIV>
<DIV>&gt;level&nbsp;is&nbsp;the&nbsp;difference&nbsp;between&nbsp;the&nbsp;ground&nbsp;state&nbsp;energy&nbsp;of&nbsp;the&nbsp;system&nbsp;&nbsp;</DIV>
<DIV>&gt;with&nbsp;N&nbsp;electrons&nbsp;and&nbsp;that&nbsp;with&nbsp;N-1&nbsp;electrons&nbsp;(ionization&nbsp;potential).&nbsp;&nbsp;</DIV>
<DIV>&gt;The&nbsp;lowest&nbsp;unoccupied&nbsp;energy&nbsp;is&nbsp;the&nbsp;difference&nbsp;between&nbsp;the&nbsp;ground&nbsp;&nbsp;</DIV>
<DIV>&gt;states&nbsp;with&nbsp;N+1&nbsp;and&nbsp;N&nbsp;electrons&nbsp;(electron&nbsp;affinity).</DIV>
<DIV>The occupation of electrons depends on the&nbsp;sequence of their energies. 
</DIV>
<DIV>&nbsp;</DIV>
<DIV>&gt;4)&nbsp;For&nbsp;any&nbsp;finite&nbsp;system&nbsp;(as&nbsp;well&nbsp;as&nbsp;for&nbsp;insulating&nbsp;infinite&nbsp;ones)&nbsp;the&nbsp;&nbsp;</DIV>
<DIV>&gt;electron&nbsp;affinity&nbsp;is&nbsp;different&nbsp;from&nbsp;the&nbsp;ionization&nbsp;potential.&nbsp;For&nbsp;&nbsp;</DIV>
<DIV>&gt;(infinite)&nbsp;metals,&nbsp;they&nbsp;coincide&nbsp;and&nbsp;the&nbsp;define&nbsp;the&nbsp;Fermi&nbsp;energy:&nbsp;by&nbsp;&nbsp;</DIV>
<DIV>&gt;definition,&nbsp;the&nbsp;energy&nbsp;necessary&nbsp;to&nbsp;add&nbsp;or&nbsp;to&nbsp;remove&nbsp;an&nbsp;electron&nbsp;from&nbsp;&nbsp;</DIV>
<DIV>&gt;the&nbsp;system&nbsp;(in&nbsp;classical&nbsp;thermodynamics&nbsp;this&nbsp;same&nbsp;quantity&nbsp;is&nbsp;called&nbsp;&nbsp;</DIV>
<DIV>&gt;the&nbsp;chemical&nbsp;potential).&nbsp;For&nbsp;insulators,&nbsp;it&nbsp;is&nbsp;not&nbsp;that&nbsp;the&nbsp;Fermi&nbsp;&nbsp;</DIV>
<DIV>&gt;energy&nbsp;"does&nbsp;not&nbsp;exist".&nbsp;Only,&nbsp;it&nbsp;is&nbsp;ill-defined&nbsp;it&nbsp;the&nbsp;zero-&nbsp;</DIV>
<DIV>&gt;temperature&nbsp;limit&nbsp;(it&nbsp;can&nbsp;be&nbsp;assumed&nbsp;to&nbsp;take&nbsp;any&nbsp;value&nbsp;between&nbsp;the&nbsp;&nbsp;</DIV>
<DIV>&gt;electron&nbsp;affinity&nbsp;and&nbsp;the&nbsp;ionization&nbsp;potential).&nbsp;At&nbsp;any&nbsp;finite&nbsp;&nbsp;</DIV>
<DIV>&gt;temperature,&nbsp;thermodynamic&nbsp;considerations&nbsp;remove&nbsp;this&nbsp;indeterminacy.</DIV>
<DIV>I need&nbsp;more time to understand these&nbsp;comments.&nbsp;</DIV>
<DIV>&nbsp;</DIV>
<DIV>&gt;&gt;&nbsp;The&nbsp;electron&nbsp;states(eigenvalue&nbsp;of&nbsp;the&nbsp;density&nbsp;matrix)</DIV>
<DIV>&nbsp;</DIV>
<DIV>&gt;what&nbsp;a&nbsp;mess,&nbsp;here!&nbsp;electron&nbsp;states,&nbsp;if&nbsp;ever,&nbsp;may&nbsp;be&nbsp;eigenSTATES&nbsp;of&nbsp;a&nbsp;&nbsp;</DIV>
<DIV>&gt;quantum&nbsp;operator,&nbsp;not&nbsp;eigenVALUES.&nbsp;it&nbsp;is&nbsp;true&nbsp;that&nbsp;for&nbsp;independent&nbsp;&nbsp;</DIV>
<DIV>&gt;electrons&nbsp;the&nbsp;"electron&nbsp;states"&nbsp;(i.e.&nbsp;the&nbsp;eigensSTATES&nbsp;of&nbsp;the&nbsp;one-&nbsp;</DIV>
<DIV>&gt;particle&nbsp;Hamiltonian)&nbsp;are&nbsp;also&nbsp;eigenstates&nbsp;of&nbsp;the&nbsp;one-particle&nbsp;density&nbsp;&nbsp;</DIV>
<DIV>&gt;matrix,&nbsp;but&nbsp;the&nbsp;viceversa&nbsp;is&nbsp;not&nbsp;true.&nbsp;Being&nbsp;an&nbsp;eigenstate&nbsp;of&nbsp;the&nbsp;&nbsp;</DIV>
<DIV>&gt;density&nbsp;matrix&nbsp;is&nbsp;not&nbsp;a&nbsp;sufficient&nbsp;condition&nbsp;for&nbsp;being&nbsp;a&nbsp;legitamate&nbsp;&nbsp;</DIV>
<DIV>&gt;"electron&nbsp;state"&nbsp;(in&nbsp;the&nbsp;sense&nbsp;of&nbsp;being&nbsp;an&nbsp;eigenstate&nbsp;of&nbsp;the&nbsp;&nbsp;</DIV>
<DIV>&gt;Hamiltonian).&nbsp;this&nbsp;is&nbsp;so&nbsp;because&nbsp;the&nbsp;density&nbsp;matrix&nbsp;is&nbsp;a&nbsp;projector,&nbsp;&nbsp;</DIV>
<DIV>&gt;whose&nbsp;eigenvalues&nbsp;(0&nbsp;and&nbsp;1)&nbsp;are&nbsp;highly&nbsp;degenerate&nbsp;...</DIV>
<DIV>I'm sorry for&nbsp;my terrible opinion. eigenSTATE should be the </DIV>
<DIV>eigenvector of matrix (quantum operator) and eigenVALUE should</DIV>
<DIV>be the mean value of quantum operator.&nbsp;I have read some quantum</DIV>
<DIV>mechanics textbooks as Eyvaz suggested (C.KITTEL), unfortunately </DIV>
<DIV>I fail to&nbsp;make a connection between the book 
and&nbsp;application.&nbsp;&nbsp;</DIV>
<DIV>&nbsp;</DIV>
<DIV>&gt;&gt;&nbsp;My&nbsp;brain&nbsp;doesn't&nbsp;work.</DIV>
<DIV>&nbsp;</DIV>
<DIV>&gt;take&nbsp;it&nbsp;easy.&nbsp;you&nbsp;are&nbsp;probably&nbsp;one&nbsp;of&nbsp;the&nbsp;many&nbsp;victims&nbsp;of&nbsp;the&nbsp;modern&nbsp;&nbsp;</DIV>
<DIV>&gt;tendency&nbsp;to&nbsp;study&nbsp;advanced&nbsp;(at&nbsp;times,&nbsp;very&nbsp;advanced)&nbsp;topics&nbsp;without&nbsp;&nbsp;</DIV>
<DIV>&gt;having&nbsp;properly&nbsp;understood&nbsp;the&nbsp;fundamentals.&nbsp;as&nbsp;trivial&nbsp;as&nbsp;these&nbsp;&nbsp;</DIV>
<DIV>&gt;fundamentals&nbsp;may&nbsp;be,&nbsp;it&nbsp;takes&nbsp;time&nbsp;to&nbsp;master&nbsp;them.&nbsp;I&nbsp;am&nbsp;sure&nbsp;it&nbsp;is&nbsp;not&nbsp;&nbsp;</DIV>
<DIV>&gt;your&nbsp;fault.</DIV>
<DIV><FONT color=#000080>In fact&nbsp;the chemical <FONT face=Verdana 
size=2>process is&nbsp;my interesting</FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080>&nbsp;and&nbsp;</FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080>the physical&nbsp;analysis </FONT></FONT>
<DIV><FONT face=Verdana size=2><FONT color=#000080>are&nbsp;the most powerful 
and&nbsp;essential idea to </FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>get a deep&nbsp;insight into the </FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>mechanism of reactions. 
</FONT></FONT><FONT face=Verdana size=2><FONT color=#000080>Honest to 
myself,&nbsp;</FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>the&nbsp;output&nbsp;information(</FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>local relaxtion, electron 
state around fermi&nbsp;level and&nbsp;redox energy) are 
<DIV><FONT face=Verdana size=2><FONT color=#000080>important&nbsp;to 
me.&nbsp;However the&nbsp;results</FONT></FONT></FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080>&nbsp;</FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>largely depends on the </FONT></FONT><FONT face=Verdana 
size=2><FONT color=#000080>input</FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>&nbsp;which </FONT></FONT></DIV>
<DIV><FONT face=Verdana size=2><FONT color=#000080>can only be setted exactly 
by&nbsp;a systematic understanding </FONT></FONT><FONT face=Verdana size=2><FONT 
color=#000080>of the quantum </FONT></FONT><FONT color=#000080>mechanic 
</FONT></DIV>
<DIV><FONT color=#000080>theory.</FONT><FONT 
color=#000080>&nbsp;(To&nbsp;what&nbsp;</FONT><FONT color=#000080>extent&nbsp;of 
the knowledge&nbsp;should I&nbsp;achieve in quantum mechanics </FONT></DIV>
<DIV><FONT color=#000080>field is another </FONT><FONT color=#000080>problem 
which has </FONT><FONT color=#000080>confused me for a long time...) 
</FONT><FONT color=#000080>Thanks again </FONT></DIV>
<DIV><FONT color=#000080>to&nbsp;Stefano for </FONT><FONT color=#000080>giving 
me </FONT><FONT color=#000080>confidence. </FONT><FONT color=#000080>I will 
try&nbsp;</FONT><FONT color=#000080>my best.</FONT></DIV></DIV>
<DIV><FONT color=#000080></FONT>&nbsp;</DIV>
<DIV><FONT color=#000080>&nbsp; wrote by Lazaro:</FONT></DIV>
<DIV>&gt;... ... ...</DIV>
<DIV>&gt;I think it would be better to keep the definition of Fermi 
energy<BR>&gt;separated from the definition of chemical potential. If we stick 
to the<BR>&gt;definition of the Fermi energy as the energy of the highest 
occupied<BR>&gt;electron state at T=0K then there is a Fermi energy in 
semiconductors,<BR>&gt;that is the top of the valence band, and a chemical 
potential somewhere<BR>&gt;in the gap depending on the temperature. If the Fermi 
energy is defined<BR>&gt;as a value of the energy that divides occupied and 
empty states (as in<BR>&gt;Ashcroft &amp; Mermin I think) then any value in the 
gap could be taken as a<BR>&gt;Fermi energy.</DIV>
<DIV>I found that it is the clearest explanation of fermi energy. I deeply agree 
with you.</DIV>
<DIV>At last I deeply appreciate all your kindly helps once more.<IMG 
src="cid:__0@Foxmail.net"></DIV>
<DIV>&nbsp;</DIV>
<DIV><FONT color=#000080>Best regards,</FONT></DIV>
<DIV><FONT color=#000080>XQ Wang</FONT></DIV>
<DIV><FONT color=#000080>
<DIV>
<DIV><FONT face=Verdana size=2>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=FR 
style="mso-ansi-language: FR"><FONT size=3><FONT 
face="Times New Roman">=====================================<o:p></o:p></FONT></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt; mso-outline-level: 1"><SPAN 
lang=FR style="mso-ansi-language: FR"><FONT size=3><FONT 
face="Times New Roman">X.Q. Wang <o:p></o:p></FONT></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=FR 
style="mso-ansi-language: FR"><A href="mailto:wangxinquan@tju.edu.cn"><FONT 
face="Times New Roman" 
size=3>wangxinquan@tju.edu.cn</FONT></A><o:p></o:p></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><FONT size=3><FONT 
face="Times New Roman"><st1:place w:st="on"><st1:PlaceType w:st="on"><SPAN 
lang=EN-US>School</SPAN></st1:PlaceType><SPAN lang=EN-US> of <st1:PlaceName 
w:st="on">Chemical Engineering</st1:PlaceName></SPAN></st1:place><SPAN 
lang=EN-US> and Technology</SPAN></FONT></FONT></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt; mso-outline-level: 1"><st1:place 
w:st="on"><FONT size=3><FONT face="Times New Roman"><st1:PlaceName 
w:st="on"><SPAN lang=EN-US>Tianjin</SPAN></st1:PlaceName><SPAN lang=EN-US> 
<st1:PlaceType 
w:st="on">University</st1:PlaceType></SPAN></FONT></FONT></st1:place></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=EN-US><FONT 
face="Times New Roman" size=3>92 Weijin Road, Tianjin, P. R. 
China</FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=EN-US><FONT 
face="Times New Roman" size=3>tel:86-22-27890268, fax: 
86-22-27892301</FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0cm 0cm 0pt"><SPAN lang=EN-US><FONT 
face="Times New Roman" 
size=3>=====================================</FONT></SPAN></P></FONT></DIV></DIV>&nbsp;&nbsp;&nbsp;</FONT><FONT 
color=#000080> </FONT></DIV></DIV></FONT></DIV></BODY></HTML>