[Pw_forum] example06

Fethi SOYALP fsoyalp at yyu.edu.tr
Tue Jan 4 20:31:08 CET 2005


 Dear PWSCF user’s
My question is about example06. in example06 matdyn.x calculate vibration
modes (for AlAs) at any q-vector from previously calculated IFC’s and save
results in matdyn.modes
I can determine some modes but not all. how can I determine vibration
modes. which ones are LA-TA, which ones are LO-TO. I have need some
explanations.



q =       0.0000      0.0000      0.0000

I guess no splitting

q =       0.1250      0.0000      0.0000

23.8935   T? (may be TA because  its vibration is small, but Al vibration
is bigger than As vibration. how can I decide )

23.8935   TA (because As vibration is bigger than Al)
43.6837   L? (LA or LO which one?)
374.1934  TO
374.1934  TO
411.2102  LO

q =       0.1250      0.0000      0.0000

46.2977   TA
46.2977   TA
84.7692   L?
370.0075  TO
370.0075  TO
412.4930  LO

q =       0.3750      0.0000      0.0000

65.6812  TA
65.6812  TA
121.6146  L?
363.2877  TO
363.2877  TO
413.1999  LO

q =       0.5000      0.0000      0.0000

80.5497
80.5497
153.5469
355.7745
355.7745
412.6416







matdyn MODES

     diagonalizing the dynamical matrix ...

 q =       0.0000      0.0000      0.0000
 **************************************************************************
     omega( 1) =       0.000000 [THz] =      -0.000009 [cm-1]
 ( -0.058918   0.000000    -0.055329   0.000000     0.702472   0.000000   )
 ( -0.058918   0.000000    -0.055329   0.000000     0.702472   0.000000   )
     omega( 2) =       0.000000 [THz] =      -0.000007 [cm-1]
 ( -0.428642   0.000002     0.562314  -0.000002     0.008338   0.000000   )
 ( -0.428642   0.000002     0.562314  -0.000002     0.008338   0.000000   )
     omega( 3) =       0.000000 [THz] =       0.000001 [cm-1]
 ( -0.559281   0.000000    -0.425138   0.000000    -0.080393   0.000000   )
 ( -0.559281   0.000000    -0.425138   0.000000    -0.080393   0.000000   )
     omega( 4) =      11.258455 [THz] =     375.544117 [cm-1]
 (  0.000000   0.000000    -0.302638   0.000000    -0.890853   0.000000   )
 (  0.000000   0.000000     0.108982   0.000000     0.320803   0.000000   )
     omega( 5) =      11.258455 [THz] =     375.544117 [cm-1]
 (  0.000000   0.000000    -0.890853   0.000000     0.302638   0.000000   )
 (  0.000000   0.000000     0.320803   0.000000    -0.108982   0.000000   )
     omega( 6) =      12.308719 [THz] =     410.577401 [cm-1]
 (  0.940855  -0.000093     0.000000   0.000000     0.000000   0.000000   )
 ( -0.338809   0.000034     0.000000   0.000000     0.000000   0.000000   )
 **************************************************************************
     diagonalizing the dynamical matrix ...

 q =       0.1250      0.0000      0.0000
 **************************************************************************
     omega( 1) =       0.716305 [THz] =      23.893534 [cm-1]
 (  0.000000   0.000000     0.567877  -0.149466    -0.363260  -0.149123   )
 (  0.000000   0.000000     0.534209  -0.309894    -0.345784   0.000000   )
     omega( 2) =       0.716305 [THz] =      23.893534 [cm-1]
 (  0.000000   0.000000    -0.340285   0.195964    -0.582679  -0.072865   )
 (  0.000000   0.000000    -0.299101   0.173508    -0.617587   0.000000   )
     omega( 3) =       1.309595 [THz] =      43.683674 [cm-1]
 ( -0.580354   0.392046     0.000000   0.000000     0.000000   0.000000   )
 ( -0.502160   0.507272     0.000000   0.000000     0.000000   0.000000   )
     omega( 4) =      11.217963 [THz] =     374.193441 [cm-1]
 (  0.000000   0.000000     0.254308  -0.116312     0.887037   0.143423   )
 (  0.000000   0.000000    -0.082315   0.012605    -0.327810   0.000000   )
     omega( 5) =      11.217963 [THz] =     374.193441 [cm-1]
 (  0.000000   0.000000    -0.895651  -0.072209     0.219242   0.173592   )
 (  0.000000   0.000000     0.324033  -0.049620    -0.083274   0.000000   )
     omega( 6) =      12.327689 [THz] =     411.210163 [cm-1]
 ( -0.903450  -0.269791     0.000000   0.000000     0.000000   0.000000   )
 (  0.331686   0.031218     0.000000   0.000000     0.000000   0.000000   )
 **************************************************************************
     diagonalizing the dynamical matrix ...

 q =       0.2500      0.0000      0.0000
 **************************************************************************
     omega( 1) =       1.387961 [THz] =      46.297692 [cm-1]
 (  0.000000   0.000000     0.056876  -0.390542     0.528172   0.250229   )
 (  0.000000   0.000000    -0.101711  -0.199858     0.672587   0.000000   )
     omega( 2) =       1.387961 [THz] =      46.297692 [cm-1]
 (  0.000000   0.000000    -0.074486  -0.579683    -0.388970  -0.066781   )
 (  0.000000   0.000000    -0.305057  -0.599428    -0.224251   0.000000   )
     omega( 3) =       2.541301 [THz] =      84.769239 [cm-1]
 ( -0.679395   0.039499     0.000000   0.000000     0.000000   0.000000   )
 ( -0.659519   0.319212     0.000000   0.000000     0.000000   0.000000   )
     omega( 4) =      11.092471 [THz] =     370.007460 [cm-1]
 (  0.000000   0.000000    -0.358150   0.384213    -0.741105  -0.247302   )
 (  0.000000   0.000000     0.068753  -0.088635     0.318011   0.000000   )
     omega( 5) =      11.092471 [THz] =     370.007460 [cm-1]
 (  0.000000   0.000000     0.704268  -0.338233    -0.403478  -0.336298   )
 (  0.000000   0.000000    -0.194913   0.251277     0.112175   0.000000   )
     omega( 6) =      12.366147 [THz] =     412.493005 [cm-1]
 (  0.921984   0.222108     0.000000   0.000000     0.000000   0.000000   )
 ( -0.313330   0.049377     0.000000   0.000000     0.000000   0.000000   )
 **************************************************************************
     diagonalizing the dynamical matrix ...

 q =       0.3750      0.0000      0.0000
 **************************************************************************
     omega( 1) =       1.969058 [THz] =      65.681153 [cm-1]
 (  0.000000   0.000000     0.086125  -0.379848     0.446754   0.381386   )
 (  0.000000   0.000000    -0.156536  -0.068005     0.688568   0.000000   )
     omega( 2) =       1.969058 [THz] =      65.681153 [cm-1]
 (  0.000000   0.000000     0.373673   0.453225     0.381268  -0.079602   )
 (  0.000000   0.000000     0.631544   0.274367     0.170670   0.000000   )
     omega( 3) =       3.645889 [THz] =     121.614574 [cm-1]
 ( -0.630898  -0.143777     0.000000   0.000000     0.000000   0.000000   )
 ( -0.712206   0.272136     0.000000   0.000000     0.000000   0.000000   )
     omega( 4) =      10.891019 [THz] =     363.287718 [cm-1]
 (  0.000000   0.000000    -0.543103   0.122318    -0.716708  -0.250860   )
 (  0.000000   0.000000     0.153096  -0.012838     0.299788   0.000000   )
     omega( 5) =      10.891019 [THz] =     363.287718 [cm-1]
 (  0.000000   0.000000    -0.551575  -0.521887     0.140337   0.538728   )
 (  0.000000   0.000000     0.298739  -0.025050    -0.153633   0.000000   )
     omega( 6) =      12.387338 [THz] =     413.199862 [cm-1]
 (  0.953343   0.075564     0.000000   0.000000     0.000000   0.000000   )
 ( -0.255091   0.142671     0.000000   0.000000     0.000000   0.000000   )
 **************************************************************************
     diagonalizing the dynamical matrix ...

 q =       0.5000      0.0000      0.0000
 **************************************************************************
     omega( 1) =       2.414802 [THz] =      80.549654 [cm-1]
 (  0.000000   0.000000    -0.201412  -0.326135     0.162955   0.568834   )
 (  0.000000   0.000000    -0.473440   0.247084     0.466634   0.000000   )
     omega( 2) =       2.414802 [THz] =      80.549654 [cm-1]
 (  0.000000   0.000000     0.579683  -0.118719     0.382316   0.027665   )
 (  0.000000   0.000000     0.413685  -0.215899     0.534037   0.000000   )
     omega( 3) =       4.603191 [THz] =     153.546931 [cm-1]
 ( -0.474247  -0.359430     0.000000   0.000000     0.000000   0.000000   )
 ( -0.796163   0.109651     0.000000   0.000000     0.000000   0.000000   )
     omega( 4) =      10.665779 [THz] =     355.774461 [cm-1]
 (  0.000000   0.000000    -0.753733  -0.125154    -0.530457   0.145731   )
 (  0.000000   0.000000     0.280709  -0.066726     0.174215   0.000000   )
     omega( 5) =      10.665779 [THz] =     355.774461 [cm-1]
 (  0.000000   0.000000    -0.019106   0.549780    -0.296072  -0.704356   )
 (  0.000000   0.000000    -0.169493   0.040290     0.288531   0.000000   )
     omega( 6) =      12.370601 [THz] =     412.641579 [cm-1]
 (  0.962678  -0.082922     0.000000   0.000000     0.000000   0.000000   )
 ( -0.165867   0.197135     0.000000   0.000000     0.000000   0.000000   )
 **************************************************************************
     diagonalizing the dynamical matrix ...

 q =       0.6250      0.0000      0.0000
 **************************************************************************
     omega( 1) =       2.694521 [THz] =      89.880146 [cm-1]
 (  0.000000   0.000000    -0.314902   0.393303    -0.100609  -0.483115   )
 (  0.000000   0.000000     0.240547  -0.048294    -0.665155   0.000000   )
     omega( 2) =       2.694521 [THz] =      89.880146 [cm-1]
 (  0.000000   0.000000     0.454548   0.192116     0.446765  -0.232920   )
 (  0.000000   0.000000     0.652142  -0.130930     0.245347   0.000000   )
     omega( 3) =       5.402029 [THz] =     180.193506 [cm-1]
 (  0.381631   0.344340     0.000000   0.000000     0.000000   0.000000   )
 (  0.831606  -0.210282     0.000000   0.000000     0.000000   0.000000   )
     omega( 4) =      10.496268 [THz] =     350.120141 [cm-1]
 (  0.000000   0.000000     0.655197   0.136423     0.659660  -0.056808   )
 (  0.000000   0.000000    -0.269120   0.018467    -0.202390   0.000000   )
     omega( 5) =      10.496268 [THz] =     350.120141 [cm-1]
 (  0.000000   0.000000    -0.263976   0.607202     0.079389  -0.664523   )
 (  0.000000   0.000000    -0.201916   0.013855     0.269753   0.000000   )
     omega( 6) =      12.323979 [THz] =     411.086429 [cm-1]
 (  0.962889   0.168377     0.000000   0.000000     0.000000   0.000000   )
 ( -0.145649   0.152579     0.000000   0.000000     0.000000   0.000000   )
 **************************************************************************
     diagonalizing the dynamical matrix ...

...................

Best Regards

Fethi Soyalp






More information about the Pw_forum mailing list