[Pw_forum] example06
Fethi SOYALP
fsoyalp at yyu.edu.tr
Tue Jan 4 20:31:08 CET 2005
Dear PWSCF users
My question is about example06. in example06 matdyn.x calculate vibration
modes (for AlAs) at any q-vector from previously calculated IFCs and save
results in matdyn.modes
I can determine some modes but not all. how can I determine vibration
modes. which ones are LA-TA, which ones are LO-TO. I have need some
explanations.
q = 0.0000 0.0000 0.0000
I guess no splitting
q = 0.1250 0.0000 0.0000
23.8935 T? (may be TA because its vibration is small, but Al vibration
is bigger than As vibration. how can I decide )
23.8935 TA (because As vibration is bigger than Al)
43.6837 L? (LA or LO which one?)
374.1934 TO
374.1934 TO
411.2102 LO
q = 0.1250 0.0000 0.0000
46.2977 TA
46.2977 TA
84.7692 L?
370.0075 TO
370.0075 TO
412.4930 LO
q = 0.3750 0.0000 0.0000
65.6812 TA
65.6812 TA
121.6146 L?
363.2877 TO
363.2877 TO
413.1999 LO
q = 0.5000 0.0000 0.0000
80.5497
80.5497
153.5469
355.7745
355.7745
412.6416
matdyn MODES
diagonalizing the dynamical matrix ...
q = 0.0000 0.0000 0.0000
**************************************************************************
omega( 1) = 0.000000 [THz] = -0.000009 [cm-1]
( -0.058918 0.000000 -0.055329 0.000000 0.702472 0.000000 )
( -0.058918 0.000000 -0.055329 0.000000 0.702472 0.000000 )
omega( 2) = 0.000000 [THz] = -0.000007 [cm-1]
( -0.428642 0.000002 0.562314 -0.000002 0.008338 0.000000 )
( -0.428642 0.000002 0.562314 -0.000002 0.008338 0.000000 )
omega( 3) = 0.000000 [THz] = 0.000001 [cm-1]
( -0.559281 0.000000 -0.425138 0.000000 -0.080393 0.000000 )
( -0.559281 0.000000 -0.425138 0.000000 -0.080393 0.000000 )
omega( 4) = 11.258455 [THz] = 375.544117 [cm-1]
( 0.000000 0.000000 -0.302638 0.000000 -0.890853 0.000000 )
( 0.000000 0.000000 0.108982 0.000000 0.320803 0.000000 )
omega( 5) = 11.258455 [THz] = 375.544117 [cm-1]
( 0.000000 0.000000 -0.890853 0.000000 0.302638 0.000000 )
( 0.000000 0.000000 0.320803 0.000000 -0.108982 0.000000 )
omega( 6) = 12.308719 [THz] = 410.577401 [cm-1]
( 0.940855 -0.000093 0.000000 0.000000 0.000000 0.000000 )
( -0.338809 0.000034 0.000000 0.000000 0.000000 0.000000 )
**************************************************************************
diagonalizing the dynamical matrix ...
q = 0.1250 0.0000 0.0000
**************************************************************************
omega( 1) = 0.716305 [THz] = 23.893534 [cm-1]
( 0.000000 0.000000 0.567877 -0.149466 -0.363260 -0.149123 )
( 0.000000 0.000000 0.534209 -0.309894 -0.345784 0.000000 )
omega( 2) = 0.716305 [THz] = 23.893534 [cm-1]
( 0.000000 0.000000 -0.340285 0.195964 -0.582679 -0.072865 )
( 0.000000 0.000000 -0.299101 0.173508 -0.617587 0.000000 )
omega( 3) = 1.309595 [THz] = 43.683674 [cm-1]
( -0.580354 0.392046 0.000000 0.000000 0.000000 0.000000 )
( -0.502160 0.507272 0.000000 0.000000 0.000000 0.000000 )
omega( 4) = 11.217963 [THz] = 374.193441 [cm-1]
( 0.000000 0.000000 0.254308 -0.116312 0.887037 0.143423 )
( 0.000000 0.000000 -0.082315 0.012605 -0.327810 0.000000 )
omega( 5) = 11.217963 [THz] = 374.193441 [cm-1]
( 0.000000 0.000000 -0.895651 -0.072209 0.219242 0.173592 )
( 0.000000 0.000000 0.324033 -0.049620 -0.083274 0.000000 )
omega( 6) = 12.327689 [THz] = 411.210163 [cm-1]
( -0.903450 -0.269791 0.000000 0.000000 0.000000 0.000000 )
( 0.331686 0.031218 0.000000 0.000000 0.000000 0.000000 )
**************************************************************************
diagonalizing the dynamical matrix ...
q = 0.2500 0.0000 0.0000
**************************************************************************
omega( 1) = 1.387961 [THz] = 46.297692 [cm-1]
( 0.000000 0.000000 0.056876 -0.390542 0.528172 0.250229 )
( 0.000000 0.000000 -0.101711 -0.199858 0.672587 0.000000 )
omega( 2) = 1.387961 [THz] = 46.297692 [cm-1]
( 0.000000 0.000000 -0.074486 -0.579683 -0.388970 -0.066781 )
( 0.000000 0.000000 -0.305057 -0.599428 -0.224251 0.000000 )
omega( 3) = 2.541301 [THz] = 84.769239 [cm-1]
( -0.679395 0.039499 0.000000 0.000000 0.000000 0.000000 )
( -0.659519 0.319212 0.000000 0.000000 0.000000 0.000000 )
omega( 4) = 11.092471 [THz] = 370.007460 [cm-1]
( 0.000000 0.000000 -0.358150 0.384213 -0.741105 -0.247302 )
( 0.000000 0.000000 0.068753 -0.088635 0.318011 0.000000 )
omega( 5) = 11.092471 [THz] = 370.007460 [cm-1]
( 0.000000 0.000000 0.704268 -0.338233 -0.403478 -0.336298 )
( 0.000000 0.000000 -0.194913 0.251277 0.112175 0.000000 )
omega( 6) = 12.366147 [THz] = 412.493005 [cm-1]
( 0.921984 0.222108 0.000000 0.000000 0.000000 0.000000 )
( -0.313330 0.049377 0.000000 0.000000 0.000000 0.000000 )
**************************************************************************
diagonalizing the dynamical matrix ...
q = 0.3750 0.0000 0.0000
**************************************************************************
omega( 1) = 1.969058 [THz] = 65.681153 [cm-1]
( 0.000000 0.000000 0.086125 -0.379848 0.446754 0.381386 )
( 0.000000 0.000000 -0.156536 -0.068005 0.688568 0.000000 )
omega( 2) = 1.969058 [THz] = 65.681153 [cm-1]
( 0.000000 0.000000 0.373673 0.453225 0.381268 -0.079602 )
( 0.000000 0.000000 0.631544 0.274367 0.170670 0.000000 )
omega( 3) = 3.645889 [THz] = 121.614574 [cm-1]
( -0.630898 -0.143777 0.000000 0.000000 0.000000 0.000000 )
( -0.712206 0.272136 0.000000 0.000000 0.000000 0.000000 )
omega( 4) = 10.891019 [THz] = 363.287718 [cm-1]
( 0.000000 0.000000 -0.543103 0.122318 -0.716708 -0.250860 )
( 0.000000 0.000000 0.153096 -0.012838 0.299788 0.000000 )
omega( 5) = 10.891019 [THz] = 363.287718 [cm-1]
( 0.000000 0.000000 -0.551575 -0.521887 0.140337 0.538728 )
( 0.000000 0.000000 0.298739 -0.025050 -0.153633 0.000000 )
omega( 6) = 12.387338 [THz] = 413.199862 [cm-1]
( 0.953343 0.075564 0.000000 0.000000 0.000000 0.000000 )
( -0.255091 0.142671 0.000000 0.000000 0.000000 0.000000 )
**************************************************************************
diagonalizing the dynamical matrix ...
q = 0.5000 0.0000 0.0000
**************************************************************************
omega( 1) = 2.414802 [THz] = 80.549654 [cm-1]
( 0.000000 0.000000 -0.201412 -0.326135 0.162955 0.568834 )
( 0.000000 0.000000 -0.473440 0.247084 0.466634 0.000000 )
omega( 2) = 2.414802 [THz] = 80.549654 [cm-1]
( 0.000000 0.000000 0.579683 -0.118719 0.382316 0.027665 )
( 0.000000 0.000000 0.413685 -0.215899 0.534037 0.000000 )
omega( 3) = 4.603191 [THz] = 153.546931 [cm-1]
( -0.474247 -0.359430 0.000000 0.000000 0.000000 0.000000 )
( -0.796163 0.109651 0.000000 0.000000 0.000000 0.000000 )
omega( 4) = 10.665779 [THz] = 355.774461 [cm-1]
( 0.000000 0.000000 -0.753733 -0.125154 -0.530457 0.145731 )
( 0.000000 0.000000 0.280709 -0.066726 0.174215 0.000000 )
omega( 5) = 10.665779 [THz] = 355.774461 [cm-1]
( 0.000000 0.000000 -0.019106 0.549780 -0.296072 -0.704356 )
( 0.000000 0.000000 -0.169493 0.040290 0.288531 0.000000 )
omega( 6) = 12.370601 [THz] = 412.641579 [cm-1]
( 0.962678 -0.082922 0.000000 0.000000 0.000000 0.000000 )
( -0.165867 0.197135 0.000000 0.000000 0.000000 0.000000 )
**************************************************************************
diagonalizing the dynamical matrix ...
q = 0.6250 0.0000 0.0000
**************************************************************************
omega( 1) = 2.694521 [THz] = 89.880146 [cm-1]
( 0.000000 0.000000 -0.314902 0.393303 -0.100609 -0.483115 )
( 0.000000 0.000000 0.240547 -0.048294 -0.665155 0.000000 )
omega( 2) = 2.694521 [THz] = 89.880146 [cm-1]
( 0.000000 0.000000 0.454548 0.192116 0.446765 -0.232920 )
( 0.000000 0.000000 0.652142 -0.130930 0.245347 0.000000 )
omega( 3) = 5.402029 [THz] = 180.193506 [cm-1]
( 0.381631 0.344340 0.000000 0.000000 0.000000 0.000000 )
( 0.831606 -0.210282 0.000000 0.000000 0.000000 0.000000 )
omega( 4) = 10.496268 [THz] = 350.120141 [cm-1]
( 0.000000 0.000000 0.655197 0.136423 0.659660 -0.056808 )
( 0.000000 0.000000 -0.269120 0.018467 -0.202390 0.000000 )
omega( 5) = 10.496268 [THz] = 350.120141 [cm-1]
( 0.000000 0.000000 -0.263976 0.607202 0.079389 -0.664523 )
( 0.000000 0.000000 -0.201916 0.013855 0.269753 0.000000 )
omega( 6) = 12.323979 [THz] = 411.086429 [cm-1]
( 0.962889 0.168377 0.000000 0.000000 0.000000 0.000000 )
( -0.145649 0.152579 0.000000 0.000000 0.000000 0.000000 )
**************************************************************************
diagonalizing the dynamical matrix ...
...................
Best Regards
Fethi Soyalp
More information about the Pw_forum
mailing list