[Pw_forum] rotational ASR in nanotube

WU Gang wugaxp at gmail.com
Tue Aug 31 13:45:23 CEST 2004


Dear Mr. Baroni,

Regretfully, I have not think out a good method to use your excellent
idea. I tried to use your suggestion, but I find this can only fix the
dynamical matrix at Gamma point, and the original force constant
matrix can not be fixed. And because of using |u_0> as a known
quantity, I think this method can not be seen as a common method.
But I find another method to apply the ASRs.
First, with some simple analysis, we can express four ASRs as some
equations, which can be regarded as some restrictions. Now my aim is
to add a correctional matrix to original force constant matrix, and
make this correctional matrix is small enough. So after I set a value
to define the "size" of the correctional matrix, I get a conditional
optimization question. After introducing some Lagrange multipliers, I
can simplify my question to solving a series of linear algebraic
equations.

Anyway, thanks for your suggestion.

Good luck,
Gang Wu

On Fri, 27 Aug 2004 18:07:05 +0200, Stefano Baroni <baroni at sissa.it> wrote:
> Dear Gang Wu:
> 
> I am not sure that what I am going to suggest is the simplest thing you
> can do, but it will work (I think).
> You have a matrix (the dynamical matrix) which you know should have a
> zero eigenvalue and you also
> know the eigenvector (because of you previous analysis). The matrix
> that is actually produced by the code
> satisfies these criteria only approximately.
> 
> What is the most general expression of a (simmetric) matrix, say A,
> having a_0 as an eigenvalue and |u0> as an eigenvector?
> 
> Answer:
> 
> A = a_0 |u0><u0| + (1-|uo><u0|)  ANYTHING  (1-|u0><u0|)
> 
> where ANYTHING is any symmetric matrix.
> 
> Can you see now how to choose , a_0, |u_0>, and ANYTHING in such a way
> as to make A as close as possible to your calculated dynamical matrix?
> This, I think would be the answer to your problem.
> 
> Take a thought at this and revert to us with the solution!
> 
> Good luck,
> SB
> 
> 
> 
> On Aug 27, 2004, at 1:36 PM, WU Gang wrote:
> 
> > Dear Mr. Baroni,
> >
> > Many thanks for your reply. With your kindly help, I have gotten the
> > criterion of rotational ASR and a formula which can check whether my
> > force constant matrix obeys this criterion. But how can I fix the
> > original force constant matrix to make it obey the rotational ASR? Do
> > I need to add a Lagrange constraint? But I have no idea how to add
> > this. Would you please give me some advice? Thank you very much!
> >
> > Gang Wu
> >
> > On Wed, 25 Aug 2004 12:44:55 +0200, Stefano Baroni <baroni at sissa.it>
> > wrote:
> >> On Aug 25, 2004, at 12:22 PM, WU Gang wrote:
> >>
> >>> Hello All.
> >>>
> >>> Recently I calculated the phonon-dispersion curves for nanotubes, but
> >>> I found that at Gamma point, there is always some imaginary phonon
> >>> frequencies, even when I applied translational acoustic summing rule
> >>> (ASR) on the final force constant matrix. After look up some
> >>> reference, a so-called rotational ASR seems to be important in reduce
> >>> these unstable frequencies.
> >>
> >> Nice problem of physics!
> >>
> >>>  But What does this rule mean in nanotube?
> >>
> >> It simply means that you cannot pay any energy to twisting a tube
> >> around its axis.
> >> In free space, this is trivially rotational invariance. With periodic
> >> boundary conditions,
> >> of course, such a twist would correspond to a non-trivial periodic
> >> mode
> >> which has got
> >> zero frequencies. The same, by the way would hold or any molecule.
> >>
> >>> And how can I apply this rule to the result force constant matrix?
> >>
> >> Once you understand what physically this "rotational ASR" means,
> >> it should not be difficult to figure out how to impose it onto the
> >> dynamical matrix that
> >> you calculate. We would leave this to you as an exercice (Hint: figure
> >> out which atomic
> >> displavement pattern would correspond to a rigid twist of the tube and
> >> see how the ASR is
> >> imposed in the translational case).
> >>
> >>> Thank you very much!
> >>
> >> You are most welcome!
> >>
> >> Stefano Baroni
> >>
> >> ---
> >> Stefano Baroni    ---  SISSA  &  DEMOCRITOS National Simulation Center
> >> via Beirut 2-4 34014 Trieste Grignano / [+39] 040 3787 406 (tel) -528
> >> (fax)
> >>
> >> Please, if possible, don't  send me MS Word or PowerPoint attachments
> >> Why? See:  http://www.gnu.org/philosophy/no-word-attachments.html
> >>
> >> _______________________________________________
> >> Pw_forum mailing list
> >> Pw_forum at pwscf.org
> >> http://www.democritos.it/mailman/listinfo/pw_forum
> >>
> > _______________________________________________
> > Pw_forum mailing list
> > Pw_forum at pwscf.org
> > http://www.democritos.it/mailman/listinfo/pw_forum
> >
> ---
> Stefano Baroni    ---  SISSA  &  DEMOCRITOS National Simulation Center
> via Beirut 2-4 34014 Trieste Grignano / [+39] 040 3787 406 (tel) -528
> (fax)
> 
> Please, if possible, don't  send me MS Word or PowerPoint attachments
> Why? See:  http://www.gnu.org/philosophy/no-word-attachments.html
> 
> _______________________________________________
> Pw_forum mailing list
> Pw_forum at pwscf.org
> http://www.democritos.it/mailman/listinfo/pw_forum
>



More information about the Pw_forum mailing list